
JJEE Volume 2, Number 3, 2016
Pages 215-230

Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619

Corresponding author's e-mail: amin.jarrah@yu.edu.jo

Optimized Parallel Architecture of Kalman Filter for Radar

Tracking Applications

Amin A. Jarrah
Department of Computer Engineering, Yarmouk University, Irbid, Jordan

e-mail: amin.jarrah@yu.edu.jo

Received: April 14, 2016 Accepted: May 7, 2016

Abstract— Kalman filter has been proven to be a very effective method to identify targets in an efficient and
accurate manner. It provides efficient estimations when the precise nature of the modeled system is unknown in the
presence of measurement and process noise. However, Kalman filter is computationally extensive especially in
Multi Target Tracking (MTT) radar system. Therefore, it is desirable to apply it on advanced parallel architecture
such as FPGA, GPU, and multi-cores to increase performance and achieve real time requirements. In this paper,
we present an efficient parallel architecture of Kalman filter on different platforms such as FPGA, GPU, and multi-
core. Kalman filter operations are carried out on a single core CPU before they are decomposed, parallelized,
scheduled, and mapped into FPGA and GPU platforms. Different optimization techniques for both the computation
and memory utilization are adopted and applied to achieve high performance. The experimental results show the
viability of using FPGA and GPU platforms to perform signal processing in real time. Parallel architectures can
significantly outperform an equivalent sequential implementation due to their pipelined architecture, custom
functionality of VLSI ASIC devices, flexibility, and adaptability. Our simulation results indicate that the achieved
speed-up of FPGA and GPU over the sequential one is improved by up to 37.76 and 31.93, respectively.

Keywords— Field-programmable gate array (FPGA), Graphic processing unit (GPU), Kalman filter, Optimization
techniques, Parallel architecture.

I. INTRODUCTION

Tracking provides the current and estimated flight path of any target of interest. Tracking
targets using radars may be very challenging due to the randomness of the data and presence
of large amount of noise commonly known as clutter [1]-[3]. Tracking can also be considered
as a filtering operation for removing unwanted targets. Due to the randomness in the radar
data, tracking algorithms play a vital role in target detection and clutter removal [2].
Therefore, it is desirable to implement the Kalman filter which is a successive process for
“predict - rectify” [4]. The filter does not need to save large data during the solving process;
and the calculations of the new values are performed as soon as new data is observed.
Kalman filter [5]-[8] is an efficient technique to estimate the state of a system from a noisy
environment. It involves two main steps: the prediction step in which the state of the system is
predicted; and the measurement step in which the estimation of the system state from noisy
measurement is refined and corrected. There are many variants of Kalman filter [5] that are
widely used for applications relying on estimation. In this work, Kalman filter has been used
to track a desired object for radar application. This will help predict the object's future
location and associate multiple objects with their corresponding tracks. Fig. 1 shows an
example of Kalman filter processes to estimate the position from a radar application.
However, Kalman filter is a complex and precise algorithm to approach the radar tracking
problem [9]. Radar systems perform high complex computations and require high speed
architecture to meet the real time constraints especially in MTT systems and track many
targets simultaneously. So, it is desirable to implement Kalman filter on high speed parallel
architecture such as Field Programmable Gate Array (FPGA), Graphic Processing Unit
(GPU), and multi-core to achieve the real time requirements. In this work, Kalman filter is

216 © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3

decomposed, parallelized, scheduled, and mapped into FPGA and GPU platforms where
different optimization techniques for both the computation and memory utilization are
adopted and applied to achieve high performance.

RADAR Prediction Step Update Step
Corrected

Target Position

Kalman Filter

Noisy Input
Signal

Aircraft

Fig. 1. Kalman filter processes to estimate the position from a radar application

The implementation of the Kalman filter fall into two major categories: software
implementation using parallel processing and dedicated hardware implementations using
customized Very Large-Scale Integration (VLSI) devices. Each implementation category
shows different trade-offs in terms of latency, area, power consumption, cost, and flexibility.
There are two main drawbacks for software based implementation:

• Firstly, programming multi-cores system is difficult and time consuming.
• Secondly, it is not cost effective since parallelization needs more processing

elements.
On the other hand, hardware implementation has the property of its custom functionality of
Application Specific Integrated Circuit (ASIC) devices, flexibility, adaptability, low cost, and
pipelined architecture. The design and implementation using FPGA parallel platform allows
for a good reutilization of expensive hardware resources. Moreover, the implementation using
FPGAs not only includes a larger hardware area, but also embedded processors and memory
resources. This option offers versatility in running diverse software applications on embedded
processors, while taking advantage of reconfigurable hardware resources, all on the same chip
package. Optimized parallel architectures using both parallel processing and hardware
implementation have been performed to achieve real time requirements and show the best
architecture for Kalman filter.
Kalman filter has different versions and configurations based on the applied application and
objective. Most of the existing techniques for parallelizing Kalman filter focus on
parallelizing matrix operations [10], [11]. However, the techniques in both [10] and [11] do
not achieve high performance when the matrix dimensions are not large to fill the GPU
pipelines. In [12], a new method was examined for parallelizing Kalman filter, where the data
dependency was broken through re-organizing calculations. However, implementation is for a
specific kind of Kalman applications. In [13], a new efficient implementation for parallelizing
matrix operations has been examined for parallelizing Kalman filter. Other methods [14], [15]
use parallel reduction techniques to get great speed-up. However, our contribution in this
paper will include:

• Optimized parallel architecture of Kalman filter on GPU has been performed.
• Optimized parallel architecture of Kalman filter on FPGA has been performed.
• Different optimized techniques such as pipelining and dataflow techniques are

applied by allowing the concurrent execution of operations to improve throughput
and latency. This implementation achieved high speed with an awareness of power,
area and cost.

• Different optimized techniques for memory utilization have been adopted and applied
to achieve high performance.

© 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3 217

The remainder of this paper is organized as follows: Section 2 details the Kalman filter theory
and its characteristics; optimization techniques for GPU platform are discussed in Section 3;
Section 4 provides different optimization techniques for FPGA platform; simulations and
synthesis results are presented in Section 5; and Section 6 provides a conclusion of the study.

II. KALMAN FILTER OPERATION

Kalman filter provides stochastic estimation in a noisy environment [5]. It operates one
estimating state by using recursive time and measurement updates over time. Noise effect on
the system decreases due to recursive cycles which finally lead to the true value of the
measurement [16]. The application of filters is to extract information from a given signal.
Signals are represented in [5] as:

k k k ky a x n= + (1)
where ky is the observed signal; ka is the gain; kx is the information signal; and kn is the

noise. Thus, the purpose of the filter is to estimate kx .

The error is defined as the difference between the estimated value kx and kx . The process of a
system [5] is assumed to be:

1k k kx Ax w+ = + (2)
where kx is state vector at time k; A is state transition matrix of process from time k to k+1;

and kw is the process noise. Observation on kx [5] can be given as:

k k kz Hx v= + (3)
where kz is the actual measurement; H is a transformation vector between the state and the

measurement; and kv is the measurement noise. It is assumed that the process and
measurement noises are white uncorrelated noises. The filter should be designed to minimize
the mean square error. The two noises are assumed to be stationary; and the covariance [5] is
given as:

[]T
k kQ E w w= (4)

[]T
k kR E v v= (5)

Mean square error [5] is:

[]T
k k kP E e e= (6)

kP is the error covariance [5] given as:

[] [()()]T T
k k k k k k kP E e e E x x x x= = − − 

 (7)
where kx is the estimate of kx . Let the prior estimate of kx be as

'
kx . An equation combining

measurements with previous estimated data is given as:

' '()k k k k kx x K z Hx= + − 
 (8)

218 © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3

where kK is the Kalman gain; '
k kz Hx−  is the innovation or measurement module.

Substituting (3) in (8), we obtain:

' '()k k k k k kx x K Hx v Hx= + + − 
 (9)

By substituting (9) in (7):

' '[[()()][()()]]T
k k k k k k k k k k kP E I K H x x K v I K H x x K v= − − − − − − 

 (10)
where '

k kx x−  is the error of prior estimates that is uncorrelated with measurement noise and
(10) is re-written as:

' '() [()()]() []T T T
k k k k k k k k k k kP I K H E x x x x I K H K E v v K= − − − − + 

 (11)
By substituting (5) and (7) in (11):

'() ()T T
k k k k k kP I K H P I K H K RK= − − + (12)

where '
kP is prior estimate of kP .

State projection [5] is calculated from:

'
1k kx Ax+ = 

 (13)
It is important in a recursion process to transfer the error covariance matrix to the next time
interval [5] given as:

' '
1 1 1 ()k k k k k k k ke x x Ax w Ax Ae w+ + += − = + − = + 

 (14)
Hence;

'
1

T
k kP AP A Q+ = + (15)

The Kalman filter equations include the prediction and update equations [5]. The prediction of
the estimate is given as:

'
1k kx Ax −= 
 (16)

'
1

T
k kP AP A Q+ = + (17)

where '
kx shows the predicted position of a target in the next state; A is the state

transformation matrix; kx is the observed position of the target in the current state; '
kP is the

predicted covariance; kP is the covariance of the target position; and Q is the process
covariance noise.
The updated equations of Kalman filter [5] are given by:

' ' 1()T T
k k kK P H HP H R −= + (18)

© 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3 219

' '()k k k k kx x K z Hx= + − 
 (19)

'() ()T T
k k k k k kP I K H P I K H K RK= − − + (20)

where kK is the Kalman gain; H is the transformation matrix; R is the actual measurement;

kz is the update position of the target; and kP is the updated covariance matrix.
The prediction stage tracks the position of the target in the next state, whereas the

measurement step updates the position based on kz , the position of the target in the current
state. The gain and error estimation covariance becomes stable with time if the noise level is
assumed to be constant. Noise assumptions play a very important role in the filter design [6].
The Kalman filter was considered to give the best estimation for linear data. Its popularity is
ascribed to its optimality, easy implementation. It yields good results theoretically and
practically. The structure in Fig. 2 shows the architecture of the Kalman filter.

Prediction Gain Update

Latch

Measurement P

PP

X

XX

K

Initial Values
Fig. 2. Kalman filter design

The association of parameters within the prediction and update stages is shown in Fig. 3.

Fig. 3. Association of parameters within two stages

Kalman filter in our model estimates values, performs operations for both X and Y positions
and tracks both directions toward the radar and far away from the radar. In this study the four
blocks operations (X for both directions and Y for both directions) for a large number of
targets are completely parallelized and mapped to different cores. The nearest neighbor data
association between frames is performed in our model to match the estimated values with the
targets in the current frame as shown in Fig. 4.

220 © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3

Block Operation 1
[(x-v), (y+v)]

Block Operation 2
[(x-v), (y-v)]

Block Operation 4
[(x+v), (y-v)]

Block Operation 3
[(x+v), (y+v)]

Data Association

Fig. 4. Four blocks operations of Kalman filter design (X for both directions and Y for both directions)

III. GPU ARCHITECTURE AND OPTIMIZATION TECHNIQUES

A. NVIDIA GForce GTX 260 GPU Architecture

Graphic Processing Unit (GPU) combines high bandwidth memories and hardware that
perform floating point arithmetic at significantly higher rates than conventional CPUs. This
makes the GPU to be very attractive for highly parallel computation algorithms.
NVIDIA GForce GTX 260 [17] GPU architecture is used in our work. GTX 260 GPU
architecture contains hundreds of cores, and each core contains threads. Our target is to
efficiently decompose the Kalman steps into tasks; each task can be executed on a different
core; and each task contains threads which are executed simultaneously.
Each core of GTX 260 GPU architecture contains eight stream processors. The core runs in
Single Instruction Multiple Data (SIMD) manner where all stream processors of a core
execute the same instruction but operate on different data. There are threads, thread blocks,
and grids of thread blocks that differentiate themselves based on memory access and kernel
execution. A thread block is a group of threads that is able to cooperate with each other and
communicate via the per-Block shared memory. Each block supports as many as 512
concurrent threads, each of which has a separate access to individual memory, counters,
registers, etc. Each grid is considered as an array of thread blocks that are running the same
kernel, and they are able to read and write from a global memory.
Computation on the GPU proceeds as follows:

• The user allocates memory on the GPU
• The user copies the data to the GPU
• The user specifies a program to execute on the GPU’s cores
• And after execution, the user copies the data back to the CPU.

B. GPU Parallelization Techniques

There are three main steps in Kalman filter: prediction step, measurement step and update
step. Each step needs high computation since the prediction, measurement or update process
must be performed for a large number of targets. Moreover, Kalman filter in our design
performs these operations for both X and Y positions and tracks objects coming toward the
radar or far away from the radar. The four blocks operations (X for both directions and Y for
both directions) for a large number of targets should be decomposed, scheduled, parallelized,
and mapped efficiently into a parallel platform to achieve high performance. The four block
operations are implemented as four functions (for both X and Y positions and for both

© 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3 221

Loop Blocking Code

1. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚 𝑏𝑏𝑏𝑏 𝐵𝐵
2. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚 𝑏𝑏𝑏𝑏 𝐵𝐵

3. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑖𝑖 𝑡𝑡𝑓𝑓 min⁡(𝑖𝑖 + 𝐵𝐵 − 1,𝑚𝑚)

4. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 𝑗𝑗 𝑡𝑡𝑓𝑓 min⁡(𝑗𝑗 + 𝐵𝐵 − 1,𝑚𝑚)

5. 𝑀𝑀𝑀𝑀𝑡𝑡𝐴𝐴 [𝑘𝑘,𝑚𝑚] = 𝑀𝑀𝑀𝑀𝑡𝑡𝐵𝐵[𝑚𝑚, 𝑘𝑘]

6. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓

7. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓

8. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓

9. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓

directions) on different cores to be executed in parallel due to the lack of dependency between
them. This makes each function to be executed as fast as possible to reduce the overall
latency. However, we cannot execute all the Kalman filter steps for a certain function in
parallel due to the dependency between its operations. The measurement steps cannot be
executed until the prediction statement is performed; and the update step cannot also be
executed until the measurement step is performed since there is a true data dependency Read
After Write (RAW) between them. Without applying some parallelization techniques,
prediction statement must serially execute and complete all its operations before measurement
statement can begin reducing the overall throughput and increasing the latency. Therefore,
different parallelization techniques are adopted and applied in the following sub-sections
between the internal operations and steps for each block of Kalman filter. This will help
execute all the operations for a certain function in parallel as much as possible by spreading
each computation on a thread on a specific core. This contributes to improving both the
throughput and the latency. There are three main operations in Kalman filter that need to be
performed efficiently:

B.1. Matrix and vector transposition
Kalman filter requires performing transpose of some vectors and matrices through its
computation. This requires some computation time and additional hardware resources to store
the result. Loop blocking technique [18] is also adopted and applied in our model. It is a loop
transformation which increases the depth of a loop nest by adding additional loops to the loop
nest as shown in Fig. 5. Loop blocking optimization technique is primarily used to improve
data locality by enhancing the reuse of the data in cache [18].

Fig. 5. Loop blocking for matrix transposition

However, transpose operation changes the locations of the values. We can only modify the
indices of the code loops without performing the transpose operation. This will improve
performance in terms of computation time, hardware storage, and power dissipation as shown
in the following code:

Original Code

1. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚
2. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚

3. 𝑀𝑀𝑀𝑀𝑡𝑡𝐴𝐴[𝑖𝑖, 𝑗𝑗] = 𝑀𝑀𝑀𝑀𝑡𝑡𝐵𝐵[j,i]

4. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓

5. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓

222 © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3

B.2. Matrix to matrix multiplication which can be parallelized in two ways:

• Blocking technique
This technique is performed by decomposing the matrices into blocks. Each core maintains a
block of A matrix and a block of B matrix as shown in Fig. 6. However, this requires
synchronization mechanisms to combine the result back which is expensive operation.

Fig. 6. Matrix to matrix multiplication using blocking technique

• Row-major techniques

This technique is performed by assigning one row and one column multiplication process for
each core. Each core only multiplies one row by one column as shown in Fig. 7. This will
remove the synchronization mechanism in the blocking technique. This technique is adopted
in our work because the required matrices dimension of Kalman filter is not large enough to
fill all the GPU pipelines.

Fig. 7. Matrix to matrix multiplication using row-major technique

• Iterative map reduce matrix multiplication

The numerous matrix multiplications can also be implemented and parallized using Iterative
Map Reduce algorithm [19]. In the iterative map reduce approach, each iteration produces an
element of the resultant matrix obtained by manipulating the rows of input matrix and a
specific column of the weight matrix. Fig. 8 shows that the iterative-based implementation
requires three nested loops to produce the resultant matrix.
Concerning iterative MR, the nested loop in map reduce technique can be better executed by
either unrolling or partially unrolling different iterations. The unrolling factor essentially
depends on the resource mapping of the involved matrices and concurrency capability of read
from the mapped resource.

Fig. 8. Pseudo code of iterative map reduce matrix multiplication

1. INITIALIZATION:
 Input matrices: X[n×m] and W[m×p]
 Let y be the resultant matrix of the size
(n×p)
2. PARALLELIZATION:
 For i from 1 to n:
 For j from 1 to p:
 Let sum = 0
 For k from 1 to m:
 Set sum ← sum + Xik × Wkj
 Set yij ← sum

© 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3 223

B.3. Matrix to vector multiplication
This operation is performed by applying row-major technique as in matrix to matrix
multiplication as shown in Fig. 9.

Fig. 9. Matrix vector multiplication process using row-major technique

C. Memory Optimization Techniques

C.1. Pre-fetching technique
Based on the pseudo code and memory accesses of the matrix vector multiplication in Fig. 10
and 11, the number of slow memory references is 2m+m2; and the number of arithmetic
operations is m2.

Fig. 10. Matrix vector multiplication pseudo code

Fig. 11. Memory accesses of matrix vector multiplication process

Accordingly, we need to optimize the code in respect to the arithmetic operations and
memory references as matrix to matrix/vector multiplication will be limited by the slow
memory speed. We applied the pre-fetching technique to reduce the demands on memory
accesses. This is performed by exploiting multiple registers to access the element in the slow
memory accesses before requiring it as shown in Fig. 12.

Fig. 12. Arithmetic operations and memory references using pre-fetching technique

For (…) {
 Y [] = A[0,0]*x[0] + A[1,0]*x[1] + A[2,0]*x[2] +
…etc;
}

float a1 A[0,0];
float a2 A[1,0];
float a3 A[2,0];

For (…) {
 Y[] = a1*x[0]+ a2*x[1] + a3*x[2];
}

{𝑓𝑓𝑒𝑒𝑀𝑀𝑒𝑒 𝑥𝑥(1:𝑚𝑚)𝑖𝑖𝑒𝑒𝑡𝑡𝑓𝑓 𝑓𝑓𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑡𝑡𝑒𝑒𝑓𝑓}
𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1:𝑚𝑚
{𝑓𝑓𝑒𝑒𝑀𝑀𝑒𝑒 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 𝑓𝑓𝑓𝑓 𝐴𝐴 𝑖𝑖𝑒𝑒𝑡𝑡𝑓𝑓 𝑓𝑓𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑡𝑡𝑒𝑒𝑓𝑓}
𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1:𝑚𝑚
𝑏𝑏(𝑖𝑖) = 𝐴𝐴(𝑖𝑖, 𝑗𝑗) ∗ 𝑥𝑥(𝑗𝑗)
{𝑟𝑟𝑓𝑓𝑖𝑖𝑡𝑡𝑒𝑒 𝑏𝑏(1:𝑚𝑚)𝑏𝑏𝑀𝑀𝑏𝑏𝑘𝑘 𝑡𝑡𝑓𝑓 𝑟𝑟𝑠𝑠𝑓𝑓𝑟𝑟 𝑚𝑚𝑒𝑒𝑚𝑚𝑓𝑓𝑓𝑓𝑏𝑏}

Implementation of y=A*x
1. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚
2. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚
3. 𝑏𝑏(𝑖𝑖) = 𝐴𝐴(𝑖𝑖, 𝑗𝑗) ∗ 𝑥𝑥(𝑗𝑗)
4. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓
5. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓

224 © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3

C.2. Copy optimization technique
The copy optimization technique is adopted and applied to reduce the cache conflicts and
improve the spatial locality as shown in Fig. 13. This method copies the non contiguous data
into a contiguous area of memory. Each word of data block will be mapped to its own cache
location to avoid cache conflicts within the data block.

Fig. 13. Matrix vector multiplication process using row-major technique

D. Coalescing Global Memory Access Technique

Global memory resides in the GPU device. Its memory is larger than other memories of the
GPU; and it is accessible by all the threads of the GPU. However, it has high latency. The
operations on the GPU device are issued per wrap. It is very important to make the wrap
access the memory in a contiguous region to improve bus utilization instead of scattered
address patterns with large strides between threads as shown in Fig. 14. Coalescing global
memory access technique [20] within a wrap is applied in our work to improve performance
as shown in Fig. 15.

Fig. 14. Scattered address patterns between threads

Fig. 15. Consecutive address patterns by applying coalescing global memory access technique

E. Exploit GPU Fast Memory

GPU memory hierarchy consists mainly of five levels: register, cache L1, cache L2, shared
memory, and global memory. It is very important to use and exploit the GPU memory
hierarchy to get how fast each memory is.
Register is the fastest memory on the GPU where each thread has its own storage. Shared
memory and cache L1 have low latency and high bandwidth. Cache L2 is slower than the
memories mentioned above; and the global memory is large. All threads have access to which
has higher latency. Shared memory is very fast since it is resided on GPU card, but it has a
small size. However, it is very effective in our model since the matrices dimensions of
Kalman filter are not large. We tried to exploit some data of the filter into the shared memory;
and we have achieved 14% better performance.

© 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3 225

F. Minimize Communication between CPU and GPU

In order to parallelize any task on GPU efficiently, we need to identify and parallelize the
hotspots on serial CPU code. Communication between the host (CPU) and the device (GPU)
is expensive. All the tasks in our work are processed by GPU. CPU needs to communicate
with GPU after the work has been processed.

IV. FPGA OPTIMIZED TECHNIQUES

Fig. 16 shows the hardware architecture to implement the Kalman filter along with the I/O
communications. For data input, we use a Double Data Rate (DDR2) Synchronous Dynamic
Random Access Memory (SDRAM) and a Direct Memory Access (DMA) which is used to
access the external memory and store data in BRAM during the first stage. In the second
stage, the computation process of Kalman filter which consists mainly of three steps begins
the prediction of the target position, computation of the covariance and Kalman gain, and the
update prediction of the target. Finally, the updated value is returned and stored in an external
memory.

DMA

BRAMs

Prediction of Target Position
 at time k+1

Data

First Stage

Second Stage

DDR2 SDRAM

Read
Data

Compute the Covariance (Pk)

& Kalman Gain (K)

Update Position of Target at
time k+1

FPGA Data

Fig. 16. Hardware architecture adopted to implement the Kalman filter.

The same parallelization techniques on GPU are applied on the FPGA architecture. Each step
of Kalman filter for both X and Y positions and for both directions are executed in parallel by
applying both unrolling and pipelining techniques. The results of both techniques with
different features are shown in Table 1.
Table 1 shows that the loop unrolling technique achieves the best performance in terms of
latency. However, it uses a huge number of flip flops, lookup tables, and high power
dissipation. In comparison, the performance of the pipelining technique is approximately
similar to the loop unrolling. We have chosen pipelining technique since it achieves a better
performance without degrading other performance parameters such as memory and power
dissipation.

226 © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3

TABLE 1
COMPARISON OF APPLYING DIFFERENT OPTIMIZATION TECHNIQUES OF THE PREDICTION

STEP FOR BOTH X AND Y POSITIONS ON ARTIX7 (XA7A100T CSG324) -1Q
 Without applying any

optimization
Applying Loop

pipelining
Applying Loop

Unrolling
Latency (cycles) 21005 1120 1090
Clock period (ns) 7.21 8.2 8.2
of Flip Flop 620 4528 135008
of Lookup table 312 3587 114025
Power dissipation
(mW) 78 612 35087

Pipelining technique is applied with the help of High-Level Synthesis (HLS) tool [21] which
overlaps the execution of statements, increases the overall throughput of the design and
reduces the latency as shown in Fig. 17. The default sequential operation is shown in Fig. 17a
which requires 8 clock cycles to complete two iterations, if we assumed that each statement
needs one clock cycles while in the pipelined version of the loop, shown in Fig. 17b, requires
only 5 clock cycles. This leads to improving both the throughput and latency.

OP1 OP2

8 clock cycles

OP3 OP4 OP1 OP2 OP3 OP4
OP1 OP2

5 clock cycles

OP3 OP4

OP1 OP2 OP3 OP4

a) without loop pipelining b) with loop pipelining

Fig. 17. Loop pipelining technique

Moreover, the dataflow pipelining optimization technique is also applied. This is a very
effective technique since it takes a sequential loop and creates parallel process architecture.
The steps of Kalman filter can operate in parallel by applying dataflow technique which is
supported by HLS [21]. HLS automatically inserts channels between these steps to insure that
the data can flow asynchronously from the first statement to the next one as shown in Fig. 18.
This results in improving both throughput and latency.

Prediction Step

Compute
Covariance

Measurement
Step

Update
Step

Kalman Gain
Update Step

Measurement Step
Compute

Covariance and
Kalman Gain

Prediction
Step

a) without dataflow pipelining b) with dataflow pipelining

Fig. 18. Loop dataflow pipelining technique

The noise covariance (kP) and Kalman gain (K) are also executed in parallel with prediction
and measurement steps since there is no dependency.

V. SIMULATIONS AND RESULTS

VHDL component of Kalman filter, which is optimized by applying different optimization
techniques, was synthesized on Xilinx ISE [22] on XC7A100T CSG324-3FPGA device.
Table 2 lists the overall performance results in terms of area, power consumption, and
maximum frequency for both high and medium precisions. The precision identifies the
measurement precision since we used fixed point implementation, high precision (Integer
bits=10, fraction bits=20) and medium precision (Integer bits=8, fraction bits=12). The
performance is measured with respect to many evaluation metrics; the throughput is given in
terms of frequency; hardware utilization is given in terms of the number of slices, Flip Flop

© 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3 227

(FF), Lookup table (LUT), BRAM_18K, Digital Signal Processing (DSP48E), and the power
dissipation. It is noted that the performance of both directions is the same as in toward radar
and far away from the radar because it can be executed in parallel since there is no
dependency between them. The hardware resources and computation time for high precision
are higher than for the expected medium precision.

TABLE 2

RESOURCES UTILIZATION AND OVERALL IMPLEMENTATION PERFORMANCE ON ARTIX7 (XC7A100T CSG324 -3)

Parameters
Medium Precision High Precision

Toward
Radar

Far from
Radar

Both Toward
Radar

Far from
Radar

Both

Maximum frequency
(MHz) 10.246 10.269 10.269 5.959 5.959 5.959

Occupied Slices 2267 1971 2297 4455 4339 4496
Slice LUTs 6956 6904 7384 15818 15724 16295
Slices of FF 1022 1041 1296 1688 1647 2106
Number LUT FF Pairs 7352 7153 7785 16285 16195 16856
DSP48E1s 6 6 8 16 16 24
Number of IOBs 85 85 87 115 115 117
Power Consumption
(mW) 1433 1433 1531 2439 2439 2595

To complete the performance evaluation circle and comparison purposes, Kalman filter was
coded in C for serial computation. The programs have been executed on a conventional PC
powered by a 2.6 GHz i7-3720QM CPU with memory RAM 8.0 GB. The result of the
execution times for i7 processor, GPU, and FPGA implementations is summarized in Table 3.
The result shows that the performance of FPGA implementations is much better than that of
other alternative implementations. The superior performance of the FPGA-based
implementations is attributed to the highly paralleled and pipelined architecture.

TABLE 3

PERFORMANCE OF DIFFERENT IMPLEMENTATIONS ON DIFFERENT PLATFORMS

Implementation Density (Number of targets)
25 50 100

i7-3720QM CPU (ms) 31.23 126.7 196.4
Medium Precision/ FPGA (ms) 0.61722 1.293 2.83
High Precision/ FPGA (ms) 1.577 3.255 5.2
GPU (ms) 2.1 3.82 6.15

Results in Table 3 also show the impact of changing the number of targets on the
performance. It shows that the system achieves a higher speed when the number of targets
increases due to exploiting the GPU and FPGA resources and the available parallelism in the
Kalman filter steps.
To efficiently test the performance and accuracy of Kalman filter on both FPGA and GPU
implementations, a real input sample data was obtained from Marine Radar project,
Communications, Control and Signal Processing laboratory and the University of Toledo
[23]. Marine radar was used for the observation of birds and quantification of their activity for
a number of years. X-band marine radars with higher resolution are used for bird detection.
The radar data is collected using a digitizing card XIR3000B from Russell Technologies. The
data collected is processed and parallelized using FPGA and GPU for target detection and
tracking. The experimental setup of the entire system is shown in Fig. 19.

228 © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3

Target Detection
Data Processing
Using both FPGA

and GPU
Data CollectionDigitizing Card

Fig. 19. Experimental setup

The noisy input real data from marine radar was applied and processed using Kalman filter on
both FPGA and GPU to examine and verify Kalman filter accuracy and show the performance
of the two platforms. Fig. 20 shows the tracking accuracy between the true state vector and
the estimated state vector for both FPGA and GPU. GPU architecture is slightly more
accurate than FPGA since FPGA is used in fixed point implementation.

Fig. 20. Tracking accuracy between the true signal and the estimated signal for both FPGA and GPU

In order to show the effectiveness of our implementation, a comparison with other
implementations [11] was performed. The implementation in [11] has more power than in our
implementation. The comparison in Table 4 shows that our implementation achieves around
speed-up 32, while other implementations achieve less than 10.

TABLE 4

OUR IMPLEMENTATION VERSUS OTHER IMPLEMENTATIONS
 Our implementation Other implementations [12]

Speed-Up 31.93 The best one is 9.1

VI. CONCLUSION

In this paper, an efficient implementation of Kalman filter on both FPGA and GPU platforms
is presented. The operations of Kalman filter are decomposed, parallelized, scheduled, and

0 50 100 150 200 250 300 350 400 450 500

No. of samples

-4

-3

-2

-1

0

1

2

3

O
ut

pu
t

Kalman Filter Tracking Accuracy Using GPU Paltform

True Signal

Estimated Signal

0 50 100 150 200 250 300 350 400 450 500

No. of samples

-4

-3

-2

-1

0

1

2

3

O
ut

pu
t

Kalman Filter Tracking Accuracy Using FPGA Paltform - High Precision

True Signal

Estimated Signal

© 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3 229

mapped on both platforms. Different optimization techniques for both the computation time
and memory utilization are adopted and applied in our model to achieve high performance.
Experimental results show the viability of using FPGA and GPU platforms to perform signal
processing in real time. The parallel architectures for both FPGA and GPU can significantly
outperform an equivalent sequential implementation due to their pipelined architecture,
custom functionality of VLSI ASIC devises, flexibility, and adaptability. Our simulation
results indicate that the achieved speed-up of FPGA and GPU over the sequential one is
improved by up to 37.76 and 31.93, respectively. It is also worth noting that the performance
has improved due to increasing input data size. FPGA platform gives a better performance
than that of GPU platform.

REFERENCES

[1] J. Gunnarsson, L. Svensson, L. Danielsson and F. Bengtsson, "Tracking vehicles using radar
detections," Proceedings of IEEE Intelligent Vehicles Symposium, pp. 296-302 , 2007.

[2] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems. Norwood, MA:
Artech House, 1999.

[3] Y. Bar-Shalom and W. D. Blair, Multitarget-Multisensor Tracking Volume III: Applications and
Advances, Norwood, MA: Artech House, 2000.

[4] G. Welch and G. Bishop, "An introduction to the Kalman Filter," SIGGRAPH, Course 8, 2001.

[5] T. Lacey, Tutorial: The Kalman Filter, from: http://mpdc.mae.cornell.edu/Courses/UQ/kf1.pdf

[6] G. Welch and G. Bishop, An Introduction to the Kalman Filter, TR 95-041, 2006, from:
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

[7] D. Simon, Kalman Filtering, Embedded Systems Programming, 2007, from:
jettronics.de/trac/projects/export/169/.../kalman-dan-simon.pdf

[8] M. I. Ribeiro, Kalman and Extended Kalman Filters: Concept, Derivation and Properties, 2004,
from: http://users.isr.ist.utl.pt/~mir/pub/kalman.pdf

[9] Z. Merhi, M. Ghantous, M. Elgamel, M. Bayoumi and A. El-Desouki, "A fully-pipelined parallel
architecture for kalman tracking filter," Proceedings of IEEE International Workshop on
Computer Architecture for Machine Perception and Sensing, pp. 81-86, 2006.

[10] T. Blattner and S. Yang, "Performance study on cuda gpus for parallelizing the local ensemble
transformed kalman filter algorithm," Concurrency and Computation: Practice and Experience,
vol. 24, no. 2, pp. 167-177, 2012.

[11] M. Y. Huang, S. C. Wei, B. Huang and Y. L. Chang, "Accelerating the kalman filter on a gpu,"
Proceedings of IEEE Parallel and Distributed Systems International Conference, pp. 1016-1020,
2011.

[12] O. Rosén and A. Medvedev, "Efficient parallel implementation of a kalman filter for single output
systems on multicore computational platforms," Proceedings of IEEE Decision and Control and
European Control Conference, pp. 3178-3183, 2011.

[13] C. Liu, "cuHMM: a CUDA implementation of hidden markov model training and classification,"
The Chronicle of Higher Education, pp. 1-13, 2009.

230 © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 3

[14] J. Nielsen and A. Sand, "Algorithms for a parallel implementation of hidden markov models with
a small state space," Proceedings of IEEE Parallel and Distributed Processing Workshops and
PhD Forum, pp. 452-459, 2011.

[15] M. Harris, "Optimizing parallel reduction in CUDA," NVIDIA Developer Technology, vol. 2, no.
4, 2007.

[16] R. Kalman, "A new approach to linear filtering and prediction problems," Journal of Basic
Engineering, vol. 82, pp. 95-108, 1960.

[17] Nvidia Corporation Geforce GTX 260, from: http://www.nvidia.com/object/product_geforce_gtx_
260_us.html.

[18] R. Allen and K. Kennedy, Optimizing Compilers for Modern Architectures, Morgan Kaufmann
Publishers, 2001.

[19] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters,"
Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[20] M. Harris, "Optimizing CUDA," Proceedings of International Conference on High Performance
Computing, Networking and Storage, 2007.

[21] High-Level Synthesis Vivado, from Xilinx, Inc. From: http://www.xilinx.com.

[22] Xilinx Corporartion. 2002, from: www.xilinx.com.

[23] Communications, Control and Signal Processing, from: http://www.eng.utoledo.edu/eecs/research
/groups/com_and_sig_proc.html.

http://www.nvidia.com/object/product_geforce_gtx_
http://www.xilinx.com/
http://www.eng.utoledo.edu/eecs/research%20/groups/com_and_sig_proc.html
http://www.eng.utoledo.edu/eecs/research%20/groups/com_and_sig_proc.html
http://www.eng.utoledo.edu/eecs/research%20/groups/com_and_sig_proc.html

