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Abstract— Kalman filter has been proven to be a very effective method to identify targets in an efficient and 
accurate manner. It provides efficient estimations when the precise nature of the modeled system is unknown in the 
presence of measurement and process noise. However, Kalman filter is computationally extensive especially in 
Multi Target Tracking (MTT) radar system. Therefore, it is desirable to apply it on advanced parallel architecture 
such as FPGA, GPU, and multi-cores to increase performance and achieve real time requirements. In this paper, 
we present an efficient parallel architecture of Kalman filter on different platforms such as FPGA, GPU, and multi-
core. Kalman filter operations are carried out on a single core CPU before they are decomposed, parallelized, 
scheduled, and mapped into FPGA and GPU platforms. Different optimization techniques for both the computation 
and memory utilization are adopted and applied to achieve high performance. The experimental results show the 
viability of using FPGA and GPU platforms to perform signal processing in real time. Parallel architectures can 
significantly outperform an equivalent sequential implementation due to their pipelined architecture, custom 
functionality of VLSI ASIC devices, flexibility, and adaptability. Our simulation results indicate that the achieved 
speed-up of FPGA and GPU over the sequential one is improved by up to 37.76 and 31.93, respectively. 
 
Keywords— Field-programmable gate array (FPGA), Graphic processing unit (GPU), Kalman filter, Optimization 
techniques, Parallel architecture. 
 

I. INTRODUCTION 

Tracking provides the current and estimated flight path of any target of interest. Tracking 
targets using radars may be very challenging due to the randomness of the data and presence 
of large amount of noise commonly known as clutter [1]-[3]. Tracking can also be considered 
as a filtering operation for removing unwanted targets. Due to the randomness in the radar 
data, tracking algorithms play a vital role in target detection and clutter removal [2]. 
Therefore, it is desirable to implement the Kalman filter which is a successive process for 
“predict - rectify” [4]. The filter does not need to save large data during the solving process; 
and the calculations of the new values are performed as soon as new data is observed.  
Kalman filter [5]-[8] is an efficient technique to estimate the state of a system from a noisy 
environment. It involves two main steps: the prediction step in which the state of the system is 
predicted; and the measurement step in which the estimation of the system state from noisy 
measurement is refined and corrected. There are many variants of Kalman filter [5] that are 
widely used for applications relying on estimation. In this work, Kalman filter has been used 
to track a desired object for radar application. This will help predict the object's future 
location and associate multiple objects with their corresponding tracks. Fig. 1 shows an 
example of Kalman filter processes to estimate the position from a radar application. 
However, Kalman filter is a complex and precise algorithm to approach the radar tracking 
problem [9]. Radar systems perform high complex computations and require high speed 
architecture to meet the real time constraints especially in MTT systems and track many 
targets simultaneously. So, it is desirable to implement Kalman filter on high speed parallel 
architecture such as Field Programmable Gate Array (FPGA), Graphic Processing Unit 
(GPU), and multi-core to achieve the real time requirements. In this work, Kalman filter is 
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decomposed, parallelized, scheduled, and mapped into FPGA and GPU platforms where 
different optimization techniques for both the computation and memory utilization are 
adopted and applied to achieve high performance. 

 

RADAR Prediction Step Update Step
Corrected 

Target Position

Kalman Filter 

Noisy Input 
Signal

Aircraft

 
Fig. 1. Kalman filter processes to estimate the position from a radar application 

 
The implementation of the Kalman filter fall into two major categories: software 
implementation using parallel processing and dedicated hardware implementations using 
customized Very Large-Scale Integration (VLSI) devices. Each implementation category 
shows different trade-offs in terms of latency, area, power consumption, cost, and flexibility. 
There are two main drawbacks for software based implementation: 

• Firstly, programming multi-cores system is difficult and time consuming. 
• Secondly, it is not cost effective since parallelization needs more processing 

elements.  
On the other hand, hardware implementation has the property of its custom functionality of 
Application Specific Integrated Circuit (ASIC) devices, flexibility, adaptability, low cost, and 
pipelined architecture. The design and implementation using FPGA parallel platform allows 
for a good reutilization of expensive hardware resources. Moreover, the implementation using 
FPGAs not only includes a larger hardware area, but also embedded processors and memory 
resources. This option offers versatility in running diverse software applications on embedded 
processors, while taking advantage of reconfigurable hardware resources, all on the same chip 
package. Optimized parallel architectures using both parallel processing and hardware 
implementation have been performed to achieve real time requirements and show the best 
architecture for Kalman filter. 
Kalman filter has different versions and configurations based on the applied application and 
objective. Most of the existing techniques for parallelizing Kalman filter focus on 
parallelizing matrix operations [10], [11]. However, the techniques in both [10] and [11] do 
not achieve high performance when the matrix dimensions are not large to fill the GPU 
pipelines. In [12], a new method was examined for parallelizing Kalman filter, where the data 
dependency was broken through re-organizing calculations. However, implementation is for a 
specific kind of Kalman applications. In [13], a new efficient implementation for parallelizing 
matrix operations has been examined for parallelizing Kalman filter. Other methods [14], [15] 
use parallel reduction techniques to get great speed-up. However, our contribution in this 
paper will include:  

• Optimized parallel architecture of Kalman filter on GPU has been performed. 
• Optimized parallel architecture of Kalman filter on FPGA has been performed. 
• Different optimized techniques such as pipelining and dataflow techniques are 

applied by allowing the concurrent execution of operations to improve throughput 
and latency. This implementation achieved high speed with an awareness of power, 
area and cost. 

• Different optimized techniques for memory utilization have been adopted and applied 
to achieve high performance. 
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The remainder of this paper is organized as follows: Section 2 details the Kalman filter theory 
and its characteristics; optimization techniques for GPU platform are discussed in Section 3; 
Section 4 provides different optimization techniques for FPGA platform; simulations and 
synthesis results are presented in Section 5; and Section 6 provides a conclusion of the study. 

II. KALMAN FILTER OPERATION 

Kalman filter provides stochastic estimation in a noisy environment [5]. It operates one 
estimating state by using recursive time and measurement updates over time. Noise effect on 
the system decreases due to recursive cycles which finally lead to the true value of the 
measurement [16]. The application of filters is to extract information from a given signal. 
Signals are represented in [5] as: 

k k k ky a x n= +                                                                                                                     (1) 
where ky is the observed signal; ka is the gain; kx  is the information signal; and kn is the 

noise. Thus, the purpose of the filter is to estimate kx . 

The error is defined as the difference between the estimated value kx and kx . The process of a 
system [5] is assumed to be: 

1k k kx Ax w+ = +                                                                                                                  (2) 
where kx is state vector at time k; A  is state transition matrix of process from time k to k+1; 

and kw is the process noise. Observation on kx [5] can be given as: 

k k kz Hx v= +                                                                                                                      (3) 
where kz  is the actual measurement; H is a transformation vector between the state and the 

measurement; and kv is the measurement noise. It is assumed that the process and 
measurement noises are white uncorrelated noises. The filter should be designed to minimize 
the mean square error. The two noises are assumed to be stationary; and the covariance [5] is 
given as: 

[ ]T
k kQ E w w=                                                                                                                     (4) 

[ ]T
k kR E v v=                                                                                                                        (5) 

Mean square error [5] is: 

[ ]T
k k kP E e e=                                                                                                                       (6) 

kP  is the error covariance [5] given as: 

[ ] [( )( ) ]T T
k k k k k k kP E e e E x x x x= = − − 

                                                                            (7) 
where kx  is the estimate of kx . Let the prior estimate of kx  be as 

'
kx . An equation combining 

measurements with previous estimated data is given as: 

' '( )k k k k kx x K z Hx= + − 
                                                                                                     (8) 
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where kK  is the Kalman gain; '
k kz Hx−  is the innovation or measurement module. 

Substituting (3) in (8), we obtain: 

' '( )k k k k k kx x K Hx v Hx= + + − 
                                                                                         (9) 

 
By substituting (9) in (7): 

' '[[( )( ) ][( )( ) ]]T
k k k k k k k k k k kP E I K H x x K v I K H x x K v= − − − − − − 

                           (10) 
where '

k kx x−   is the error of prior estimates that is uncorrelated with measurement noise and 
(10) is re-written as: 

' '( ) [( )( ) ]( ) [ ]T T T
k k k k k k k k k k kP I K H E x x x x I K H K E v v K= − − − − + 

                            (11) 
By substituting (5) and (7) in (11): 

'( ) ( )T T
k k k k k kP I K H P I K H K RK= − − +                                                                       (12) 

where '
kP  is prior estimate of kP . 

State projection [5] is calculated from: 

'
1k kx Ax+ = 

                                                                                                                        (13) 
It is important in a recursion process to transfer the error covariance matrix to the next time 
interval [5] given as: 

' '
1 1 1 ( )k k k k k k k ke x x Ax w Ax Ae w+ + += − = + − = + 

                                                          (14) 
Hence;  

'
1

T
k kP AP A Q+ = +                                                                                                             (15) 

 
The Kalman filter equations include the prediction and update equations [5]. The prediction of 
the estimate is given as: 

'
1k kx Ax −= 
                                                                                                                        (16) 

'
1

T
k kP AP A Q+ = +                                                                                                             (17) 

where '
kx  shows the predicted position of a target in the next state; A is the state 

transformation matrix; kx  is the observed position of the target in the current state; '
kP  is the 

predicted covariance; kP  is the covariance of the target position; and Q is the process 
covariance noise. 
The updated equations of Kalman filter [5] are given by: 

' ' 1( )T T
k k kK P H HP H R −= +                                                                                              (18) 
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' '( )k k k k kx x K z Hx= + − 
                                                                                                   (19) 

'( ) ( )T T
k k k k k kP I K H P I K H K RK= − − +                                                                       (20) 

 
where kK is the Kalman gain; H is the transformation matrix; R is the actual measurement; 

kz is the update position of the target; and kP  is the updated covariance matrix. 
The prediction stage tracks the position of the target in the next state, whereas the 

measurement step updates the position based on kz , the position of the target in the current 
state. The gain and error estimation covariance becomes stable with time if the noise level is 
assumed to be constant. Noise assumptions play a very important role in the filter design [6]. 
The Kalman filter was considered to give the best estimation for linear data. Its popularity is 
ascribed to its optimality, easy implementation. It yields good results theoretically and 
practically. The structure in Fig. 2 shows the architecture of the Kalman filter. 

 

Prediction Gain Update

Latch

Measurement P

PP

X

XX

K

Initial Values  
Fig. 2. Kalman filter design 

 
The association of parameters within the prediction and update stages is shown in Fig. 3. 

 

 
Fig. 3. Association of parameters within two stages 

 
Kalman filter in our model estimates values, performs operations for both X and Y positions 
and tracks both directions toward the radar and far away from the radar. In this study the four 
blocks operations (X for both directions and Y for both directions) for a large number of 
targets are completely parallelized and mapped to different cores. The nearest neighbor data 
association between frames is performed in our model to match the estimated values with the 
targets in the current frame as shown in Fig. 4. 
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Block Operation 1
[(x-v), (y+v)]

Block Operation 2
[(x-v), (y-v)]

Block Operation 4
[(x+v), (y-v)]

Block Operation 3
[(x+v), (y+v)]

Data Association

 
Fig. 4. Four blocks operations of Kalman filter design (X for both directions and Y for both directions) 

 

III. GPU ARCHITECTURE AND OPTIMIZATION TECHNIQUES 

A. NVIDIA GForce GTX 260 GPU Architecture 

Graphic Processing Unit (GPU) combines high bandwidth memories and hardware that 
perform floating point arithmetic at significantly higher rates than conventional CPUs. This 
makes the GPU to be very attractive for highly parallel computation algorithms.  
NVIDIA GForce GTX 260 [17] GPU architecture is used in our work. GTX 260 GPU 
architecture contains hundreds of cores, and each core contains threads. Our target is to 
efficiently decompose the Kalman steps into tasks; each task can be executed on a different 
core; and each task contains threads which are executed simultaneously. 
Each core of GTX 260 GPU architecture contains eight stream processors. The core runs in 
Single Instruction Multiple Data (SIMD) manner where all stream processors of a core 
execute the same instruction but operate on different data. There are threads, thread blocks, 
and grids of thread blocks that differentiate themselves based on memory access and kernel 
execution. A thread block is a group of threads that is able to cooperate with each other and 
communicate via the per-Block shared memory. Each block supports as many as 512 
concurrent threads, each of which has a separate access to individual memory, counters, 
registers, etc. Each grid is considered as an array of thread blocks that are running the same 
kernel, and they are able to read and write from a global memory.  
Computation on the GPU proceeds as follows: 

• The user allocates memory on the GPU 
• The user copies the data to the GPU 
• The user specifies a program to execute on the GPU’s cores 
• And after execution, the user copies the data back to the CPU. 

 
B. GPU Parallelization Techniques 

There are three main steps in Kalman filter: prediction step, measurement step and update 
step. Each step needs high computation since the prediction, measurement or update process 
must be performed for a large number of targets. Moreover, Kalman filter in our design 
performs these operations for both X and Y positions and tracks objects coming toward the 
radar or far away from the radar. The four blocks operations (X for both directions and Y for 
both directions) for a large number of targets should be decomposed, scheduled, parallelized, 
and mapped efficiently into a parallel platform to achieve high performance. The four block 
operations are implemented as four functions (for both X and Y positions and for both 
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Loop Blocking Code 

1. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚 𝑏𝑏𝑏𝑏 𝐵𝐵 
2.    𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚 𝑏𝑏𝑏𝑏 𝐵𝐵 

3.       𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑖𝑖 𝑡𝑡𝑓𝑓 min(𝑖𝑖 + 𝐵𝐵 − 1,𝑚𝑚) 

4.           𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 𝑗𝑗 𝑡𝑡𝑓𝑓 min(𝑗𝑗 + 𝐵𝐵 − 1,𝑚𝑚) 

5.                   𝑀𝑀𝑀𝑀𝑡𝑡𝐴𝐴 [𝑘𝑘,𝑚𝑚] = 𝑀𝑀𝑀𝑀𝑡𝑡𝐵𝐵[𝑚𝑚, 𝑘𝑘] 

6.           𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 

7.      𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 

8.  𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 

9. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 

 

directions) on different cores to be executed in parallel due to the lack of dependency between 
them. This makes each function to be executed as fast as possible to reduce the overall 
latency. However, we cannot execute all the Kalman filter steps for a certain function in 
parallel due to the dependency between its operations. The measurement steps cannot be 
executed until the prediction statement is performed; and the update step cannot also be 
executed until the measurement step is performed since there is a true data dependency Read 
After Write (RAW) between them. Without applying some parallelization techniques, 
prediction statement must serially execute and complete all its operations before measurement 
statement can begin reducing the overall throughput and increasing the latency. Therefore, 
different parallelization techniques are adopted and applied in the following sub-sections 
between the internal operations and steps for each block of Kalman filter. This will help 
execute all the operations for a certain function in parallel as much as possible by spreading 
each computation on a thread on a specific core. This contributes to improving both the 
throughput and the latency. There are three main operations in Kalman filter that need to be 
performed efficiently: 
 
B.1. Matrix and vector transposition 
Kalman filter requires performing transpose of some vectors and matrices through its 
computation. This requires some computation time and additional hardware resources to store 
the result. Loop blocking technique [18] is also adopted and applied in our model. It is a loop 
transformation which increases the depth of a loop nest by adding additional loops to the loop 
nest as shown in Fig. 5. Loop blocking optimization technique is primarily used to improve 
data locality by enhancing the reuse of the data in cache [18]. 

 

 
Fig. 5. Loop blocking for matrix transposition 

 
However, transpose operation changes the locations of the values. We can only modify the 
indices of the code loops without performing the transpose operation. This will improve 
performance in terms of computation time, hardware storage, and power dissipation as shown 
in the following code: 

 

Original Code 

1. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚 
2.   𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚 

3.            𝑀𝑀𝑀𝑀𝑡𝑡𝐴𝐴[𝑖𝑖, 𝑗𝑗] = 𝑀𝑀𝑀𝑀𝑡𝑡𝐵𝐵[j,i] 

4.   𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 

5.   𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 
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B.2. Matrix to matrix multiplication which can be parallelized in two ways: 

• Blocking technique 
This technique is performed by decomposing the matrices into blocks. Each core maintains a 
block of A matrix and a block of B matrix as shown in Fig. 6. However, this requires 
synchronization mechanisms to combine the result back which is expensive operation. 

 

 
Fig. 6. Matrix to matrix multiplication using blocking technique 

 
• Row-major techniques  

This technique is performed by assigning one row and one column multiplication process for 
each core. Each core only multiplies one row by one column as shown in Fig. 7. This will 
remove the synchronization mechanism in the blocking technique. This technique is adopted 
in our work because the required matrices dimension of Kalman filter is not large enough to 
fill all the GPU pipelines. 

 

 
Fig. 7. Matrix to matrix multiplication using row-major technique 

 
• Iterative map reduce matrix multiplication 

The numerous matrix multiplications can also be implemented and parallized using Iterative 
Map Reduce algorithm [19]. In the iterative map reduce approach, each iteration produces an 
element of the resultant matrix obtained by manipulating the rows of input matrix and a 
specific column of the weight matrix. Fig. 8 shows that the iterative-based implementation 
requires three nested loops to produce the resultant matrix. 
Concerning iterative MR, the nested loop in map reduce technique can be better executed by 
either unrolling or partially unrolling different iterations. The unrolling factor essentially 
depends on the resource mapping of the involved matrices and concurrency capability of read 
from the mapped resource. 

 

 
Fig. 8. Pseudo code of iterative map reduce matrix multiplication 

 

1. INITIALIZATION:  
       Input matrices: X[n×m] and W[m×p]  
   Let y be the resultant matrix of the size 
(n×p) 
2. PARALLELIZATION: 
   For i from 1 to n:  
      For j from 1 to p:  
         Let sum = 0 
         For k from 1 to m:  
            Set sum ← sum + Xik × Wkj 
         Set yij ← sum 
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B.3. Matrix to vector multiplication 
This operation is performed by applying row-major technique as in matrix to matrix 
multiplication as shown in Fig. 9. 

 

 
Fig. 9. Matrix vector multiplication process using row-major technique 

 
C. Memory Optimization Techniques 

C.1. Pre-fetching technique 
Based on the pseudo code and memory accesses of the matrix vector multiplication in Fig. 10 
and 11, the number of slow memory references is 2m+m2; and the number of arithmetic 
operations is m2.  

 

 
Fig. 10. Matrix vector multiplication pseudo code 

 

 
Fig. 11. Memory accesses of matrix vector multiplication process 

 
Accordingly, we need to optimize the code in respect to the arithmetic operations and 
memory references as matrix to matrix/vector multiplication will be limited by the slow 
memory speed. We applied the pre-fetching technique to reduce the demands on memory 
accesses. This is performed by exploiting multiple registers to access the element in the slow 
memory accesses before requiring it as shown in Fig. 12. 

 

 
Fig. 12. Arithmetic operations and memory references using pre-fetching technique 

For (…) { 
   Y [ ] = A[0,0]*x[0] + A[1,0]*x[1] + A[2,0]*x[2] + 
…etc; 
}  
 
float a1 A[0,0]; 
float a2 A[1,0]; 
float a3 A[2,0]; 
 
For ( … ) { 
   Y[ ] = a1*x[0]+ a2*x[1] + a3*x[2]; 
}  

{𝑓𝑓𝑒𝑒𝑀𝑀𝑒𝑒 𝑥𝑥(1:𝑚𝑚)𝑖𝑖𝑒𝑒𝑡𝑡𝑓𝑓 𝑓𝑓𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑡𝑡𝑒𝑒𝑓𝑓} 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1:𝑚𝑚 
{𝑓𝑓𝑒𝑒𝑀𝑀𝑒𝑒 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 𝑓𝑓𝑓𝑓 𝐴𝐴 𝑖𝑖𝑒𝑒𝑡𝑡𝑓𝑓 𝑓𝑓𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑡𝑡𝑒𝑒𝑓𝑓} 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1:𝑚𝑚 
𝑏𝑏(𝑖𝑖) = 𝐴𝐴(𝑖𝑖, 𝑗𝑗) ∗ 𝑥𝑥(𝑗𝑗) 
{𝑟𝑟𝑓𝑓𝑖𝑖𝑡𝑡𝑒𝑒 𝑏𝑏(1:𝑚𝑚)𝑏𝑏𝑀𝑀𝑏𝑏𝑘𝑘 𝑡𝑡𝑓𝑓 𝑟𝑟𝑠𝑠𝑓𝑓𝑟𝑟 𝑚𝑚𝑒𝑒𝑚𝑚𝑓𝑓𝑓𝑓𝑏𝑏} 

Implementation of y=A*x 
1. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚 
2.   𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑚𝑚 
3.            𝑏𝑏(𝑖𝑖) = 𝐴𝐴(𝑖𝑖, 𝑗𝑗) ∗ 𝑥𝑥(𝑗𝑗) 
4.   𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 
5.   𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 
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C.2. Copy optimization technique  
The copy optimization technique is adopted and applied to reduce the cache conflicts and 
improve the spatial locality as shown in Fig. 13. This method copies the non contiguous data 
into a contiguous area of memory. Each word of data block will be mapped to its own cache 
location to avoid cache conflicts within the data block. 

 

 
Fig. 13. Matrix vector multiplication process using row-major technique 

 
D. Coalescing Global Memory Access Technique  

Global memory resides in the GPU device. Its memory is larger than other memories of the 
GPU; and it is accessible by all the threads of the GPU. However, it has high latency. The 
operations on the GPU device are issued per wrap. It is very important to make the wrap 
access the memory in a contiguous region to improve bus utilization instead of scattered 
address patterns with large strides between threads as shown in Fig. 14. Coalescing global 
memory access technique [20] within a wrap is applied in our work to improve performance 
as shown in Fig. 15. 

 

 
Fig. 14. Scattered address patterns between threads 

 

 
Fig. 15. Consecutive address patterns by applying coalescing global memory access technique 

 
E. Exploit GPU Fast Memory 

GPU memory hierarchy consists mainly of five levels: register, cache L1, cache L2, shared 
memory, and global memory. It is very important to use and exploit the GPU memory 
hierarchy to get how fast each memory is.  
Register is the fastest memory on the GPU where each thread has its own storage. Shared 
memory and cache L1 have low latency and high bandwidth. Cache L2 is slower than the 
memories mentioned above; and the global memory is large. All threads have access to which 
has higher latency. Shared memory is very fast since it is resided on GPU card, but it has a 
small size. However, it is very effective in our model since the matrices dimensions of 
Kalman filter are not large. We tried to exploit some data of the filter into the shared memory; 
and we have achieved 14% better performance. 
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F. Minimize Communication between CPU and GPU 

In order to parallelize any task on GPU efficiently, we need to identify and parallelize the 
hotspots on serial CPU code. Communication between the host (CPU) and the device (GPU) 
is expensive. All the tasks in our work are processed by GPU. CPU needs to communicate 
with GPU after the work has been processed. 

IV. FPGA OPTIMIZED TECHNIQUES  

Fig. 16 shows the hardware architecture to implement the Kalman filter along with the I/O 
communications. For data input, we use a Double Data Rate (DDR2) Synchronous Dynamic 
Random Access Memory (SDRAM) and a Direct Memory Access (DMA) which is used to 
access the external memory and store data in BRAM during the first stage. In the second 
stage, the computation process of Kalman filter which consists mainly of three steps begins 
the prediction of the target position, computation of the covariance and Kalman gain, and the 
update prediction of the target. Finally, the updated value is returned and stored in an external 
memory. 

 

DMA

BRAMs

Prediction of Target Position 
          at time k+1

Data

First Stage

Second Stage

DDR2 SDRAM

Read
Data

Compute the Covariance (Pk)         

& Kalman Gain (K)

Update Position of Target at 
time k+1

FPGA Data

 
Fig. 16. Hardware architecture adopted to implement the Kalman filter. 

 
The same parallelization techniques on GPU are applied on the FPGA architecture. Each step 
of Kalman filter for both X and Y positions and for both directions are executed in parallel by 
applying both unrolling and pipelining techniques. The results of both techniques with 
different features are shown in Table 1. 
Table 1 shows that the loop unrolling technique achieves the best performance in terms of 
latency. However, it uses a huge number of flip flops, lookup tables, and high power 
dissipation. In comparison, the performance of the pipelining technique is approximately 
similar to the loop unrolling. We have chosen pipelining technique since it achieves a better 
performance without degrading other performance parameters such as memory and power 
dissipation. 
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TABLE 1 
COMPARISON OF APPLYING DIFFERENT OPTIMIZATION TECHNIQUES OF THE PREDICTION 

STEP FOR BOTH X AND Y POSITIONS ON ARTIX7 (XA7A100T CSG324) -1Q 
 Without applying any 

optimization 
Applying Loop 

pipelining 
Applying Loop 

Unrolling 
Latency (cycles) 21005 1120 1090 
Clock period (ns) 7.21 8.2 8.2 
# of Flip Flop 620 4528 135008 
# of Lookup table 312 3587 114025 
Power dissipation 
(mW) 78 612 35087 

 
Pipelining technique is applied with the help of High-Level Synthesis (HLS) tool [21] which 
overlaps the execution of statements, increases the overall throughput of the design and 
reduces the latency as shown in Fig. 17. The default sequential operation is shown in Fig. 17a 
which requires 8 clock cycles to complete two iterations, if we assumed that each statement 
needs one clock cycles while in the pipelined version of the loop, shown in Fig. 17b, requires 
only 5 clock cycles. This leads to improving both the throughput and latency. 

 

OP1 OP2

8 clock cycles

OP3 OP4 OP1 OP2 OP3 OP4
OP1 OP2

5 clock cycles

OP3 OP4

OP1 OP2 OP3 OP4

 
a) without loop pipelining                                                  b) with loop pipelining 

Fig. 17. Loop pipelining technique 
 

Moreover, the dataflow pipelining optimization technique is also applied. This is a very 
effective technique since it takes a sequential loop and creates parallel process architecture. 
The steps of Kalman filter can operate in parallel by applying dataflow technique which is 
supported by HLS [21]. HLS automatically inserts channels between these steps to insure that 
the data can flow asynchronously from the first statement to the next one as shown in Fig. 18. 
This results in improving both throughput and latency. 
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a) without dataflow pipelining                                              b) with dataflow pipelining 

Fig. 18. Loop dataflow pipelining technique 
 

The noise covariance ( kP ) and Kalman gain ( K ) are also executed in parallel with prediction 
and measurement steps since there is no dependency. 

V. SIMULATIONS AND RESULTS 

VHDL component of Kalman filter, which is optimized by applying different optimization 
techniques, was synthesized on Xilinx ISE [22] on XC7A100T CSG324-3FPGA device. 
Table 2 lists the overall performance results in terms of area, power consumption, and 
maximum frequency for both high and medium precisions. The precision identifies the 
measurement precision since we used fixed point implementation, high precision (Integer 
bits=10, fraction bits=20) and medium precision (Integer bits=8, fraction bits=12). The 
performance is measured with respect to many evaluation metrics; the throughput is given in 
terms of frequency; hardware utilization is given in terms of the number of slices, Flip Flop 
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(FF), Lookup table (LUT), BRAM_18K, Digital Signal Processing (DSP48E), and the power 
dissipation. It is noted that the performance of both directions is the same as in toward radar 
and far away from the radar because it can be executed in parallel since there is no 
dependency between them. The hardware resources and computation time for high precision 
are higher than for the expected medium precision. 

 
TABLE 2 

RESOURCES UTILIZATION AND OVERALL IMPLEMENTATION PERFORMANCE ON ARTIX7 (XC7A100T CSG324 -3) 
 

Parameters 
Medium Precision High Precision 

Toward 
Radar 

Far  from 
Radar 

Both Toward 
Radar 

Far from 
Radar 

Both 

Maximum frequency 
(MHz) 10.246 10.269 10.269 5.959 5.959 5.959 

Occupied Slices 2267 1971 2297 4455 4339 4496 
Slice LUTs 6956 6904 7384 15818 15724 16295 
Slices of FF 1022 1041 1296 1688 1647 2106 
Number LUT FF Pairs 7352 7153 7785 16285 16195 16856 
DSP48E1s 6 6 8 16 16 24 
Number of IOBs 85 85 87 115 115 117 
Power Consumption 
(mW) 1433 1433 1531 2439 2439 2595 

 
To complete the performance evaluation circle and comparison purposes, Kalman filter was 
coded in C for serial computation. The programs have been executed on a conventional PC 
powered by a 2.6 GHz i7-3720QM CPU with memory RAM 8.0 GB. The result of the 
execution times for i7 processor, GPU, and FPGA implementations is summarized in Table 3. 
The result shows that the performance of FPGA implementations is much better than that of 
other alternative implementations. The superior performance of the FPGA-based 
implementations is attributed to the highly paralleled and pipelined architecture.  

 
TABLE 3 

PERFORMANCE OF DIFFERENT IMPLEMENTATIONS ON DIFFERENT PLATFORMS 

Implementation Density (Number of targets) 
25 50 100 

i7-3720QM CPU (ms) 31.23 126.7 196.4 
Medium Precision/ FPGA (ms) 0.61722 1.293 2.83 
High Precision/ FPGA (ms) 1.577 3.255 5.2 
GPU (ms) 2.1 3.82 6.15 

 
Results in Table 3 also show the impact of changing the number of targets on the 
performance. It shows that the system achieves a higher speed when the number of targets 
increases due to exploiting the GPU and FPGA resources and the available parallelism in the 
Kalman filter steps. 
To efficiently test the performance and accuracy of Kalman filter on both FPGA and GPU 
implementations, a real input sample data was obtained from Marine Radar project, 
Communications, Control and Signal Processing laboratory and the University of Toledo 
[23]. Marine radar was used for the observation of birds and quantification of their activity for 
a number of years. X-band marine radars with higher resolution are used for bird detection. 
The radar data is collected using a digitizing card XIR3000B from Russell Technologies. The 
data collected is processed and parallelized using FPGA and GPU for target detection and 
tracking. The experimental setup of the entire system is shown in Fig. 19. 
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Target Detection
Data Processing 
Using both FPGA 

and GPU
Data CollectionDigitizing Card

 
Fig. 19. Experimental setup 

 
The noisy input real data from marine radar was applied and processed using Kalman filter on 
both FPGA and GPU to examine and verify Kalman filter accuracy and show the performance 
of the two platforms. Fig. 20 shows the tracking accuracy between the true state vector and 
the estimated state vector for both FPGA and GPU. GPU architecture is slightly more 
accurate than FPGA since FPGA is used in fixed point implementation. 

 

 
Fig. 20. Tracking accuracy between the true signal and the estimated signal for both FPGA and GPU 

 
In order to show the effectiveness of our implementation, a comparison with other 
implementations [11] was performed. The implementation in [11] has more power than in our 
implementation. The comparison in Table 4 shows that our implementation achieves around 
speed-up 32, while other implementations achieve less than 10. 

 
TABLE 4 

OUR IMPLEMENTATION VERSUS OTHER IMPLEMENTATIONS 
 Our implementation Other implementations [12] 

Speed-Up 31.93 The best one is 9.1 

VI. CONCLUSION 

In this paper, an efficient implementation of Kalman filter on both FPGA and GPU platforms 
is presented. The operations of Kalman filter are decomposed, parallelized, scheduled, and 
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mapped on both platforms. Different optimization techniques for both the computation time 
and memory utilization are adopted and applied in our model to achieve high performance. 
Experimental results show the viability of using FPGA and GPU platforms to perform signal 
processing in real time. The parallel architectures for both FPGA and GPU can significantly 
outperform an equivalent sequential implementation due to their pipelined architecture, 
custom functionality of VLSI ASIC devises, flexibility, and adaptability. Our simulation 
results indicate that the achieved speed-up of FPGA and GPU over the sequential one is 
improved by up to 37.76 and 31.93, respectively. It is also worth noting that the performance 
has improved due to increasing input data size. FPGA platform gives a better performance 
than that of GPU platform. 
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